skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davey, Blair"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 17, 2026
  2. Abstract This paper continues the study initiated in Davey (Arch Ration Mech Anal 228:159–196, 2018), where a high-dimensional limiting technique was developed and used to prove certain parabolic theorems from their elliptic counterparts. In this article, we extend these ideas to the variable-coefficient setting. This generalized technique is demonstrated through new proofs of three important theorems for variable-coefficient heat operators, one of which establishes a result that is, to the best of our knowledge, also new. Specifically, we give new proofs of$$L^2 \rightarrow L^2$$ L 2 L 2 Carleman estimates and the monotonicity of Almgren-type frequency functions, and we prove a new monotonicity of Alt–Caffarelli–Friedman-type functions. The proofs in this article rely only on their related elliptic theorems and a limiting argument. That is, each parabolic theorem is proved by taking a high-dimensional limit of a related elliptic result. 
    more » « less
  3. Abstract In this article, we investigate the quantitative unique continuation properties of complex-valued solutions to drift equations in the plane.We consider equations of the form Δ ⁢ u + W ⋅ ∇ ⁡ u = 0 {\Delta u+W\cdot\nabla u=0} in ℝ 2 {\mathbb{R}^{2}} ,where W = W 1 + i ⁢ W 2 {W=W_{1}+iW_{2}} with each W j {W_{j}} being real-valued.Under the assumptions that W j ∈ L q j {W_{j}\in L^{q_{j}}} for some q 1 ∈ [ 2 , ∞ ] {q_{1}\in[2,\infty]} , q 2 ∈ ( 2 , ∞ ] {q_{2}\in(2,\infty]} and that W 2 {W_{2}} exhibits rapid decay at infinity,we prove new global unique continuation estimates.This improvement is accomplished by reducing our equations to vector-valued Beltrami systems.Our results rely on a novel order of vanishing estimate combined with a finite iteration scheme. 
    more » « less